ON REALIZING SYMMETRIC 3-POLYTOPES*

BY
JOSEPH ZAKS

ABSTRACT

We prove the analogue of Eberhard’s Theorem for symmetric convex
3-polytopes with a 4-valent graph, and disprove a conjecture of the late T.
Motzkin about realizing symmetric convex 3-polytopes so that all of their
geodesics are in planes.

The purpose of this paper is to prove the following:

THEOREM 1. Every sequence (ka4 # k = 3) of non negative even integers
satisfying Xy»3(4 — k)p, = 8 is 4-realizable by a centrally symmetric, line
symmetric and plane symmetric 3-polytope.

THEOREM 2. For every n = 4 there exists a centrally symmetric 3-polytope
P,, having a 4-valent graph and n simple closed self-antipodal geodesics oy, -+, a,,

such that if a polytope P, is combinatorially equivalent to P, with corresponding
geodesics o}, -+, a,, then no one of the geodesics a3, -+, o, of P, is in a plane.

1. Theorem 1

A sequence (py | 4 # k = 3) of non negative integers is said to be 4-realizable
if there exists a value for p, and a 3-polytope P ( = the convex hull of a finite
set of points in E* with non empty interior) such that P has a 4-valent graph
and p, k-gons in its boundary cell-complex, for all k = 3. For additional def-
initions, see [3].

Theorem 1 is a relative to Eberhard’s Theorem [2], and it was suggested by
B. Griinbaum ([3], p. 269, # 8). For related results, see, in addition, [4], [5]
and [9].

E. Jucovi¢ mentioned, in a private communication, that he had independently
proved Theorem 1 (with one exceptional case).

* This research was supported by the National Research Council of Canada Grant A-3999.
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Note that the conditions “‘all p, even and X,53(4 — k)p, = 8 are necessary
for the 4-realizability of (pkl4 # k = 3) by a symmetric 3-polytope.
We need the following:

Lemma 1. If F is a face of a 3-polytope P, F is contained in the plane =
and T: E* - n is the orthogonal projection, then there exists a polytope P’,
combinatorially equivalent to P, such that F is a face of P’ and (T Ip,)“[Bd F]
= BdF.

ProoF. Suppose, without loss of generality, that (0,0,0) e IntF,
= {(x,y,z)[x =0} and Pc {(x,y,z)[x < 0}.

A supporting hyperplane of P, determined by a face ( # F) of P, meets the
positive x-ray in at most one point; so let o > 0 be small enough such that («,0,0)
is not strictly separated from P by any of these hyperplanes.

The transformation S, defined by

oax o oz
Sy = (250 2

is a projective transformation of E* (in fact, S is a 1 — 1 projective transformation
when properly applied to P, the real projective 3-space, with E* < P%). S|, is the
identity (pointwise!) and S[{(x,y, z) | x = a}] is the plane at infinity.

Therefore S(P) = P’ is a 3-polytope, combinatorially equivalent to P, and
F = S(F)is a face of P’.

Since no supporting hyperplane of P (except for z), determined by a face of P,
meets the closed segment (0,0,0) — («,0,0), it follows that their image under S
do not meet the ray {(e,0, 0)[0: = 0} plus the point at infinity on this ray —
S(«,0,0). Therefore they must all meet {(8,0,0) ] B <0}.

It follows immediately that T(P’) = F and that (T[ p)~'[BdF] = BdF.

ReMARK. Lemma 1 can be extended to m-polytopes in the obvious way;
the corresponding transformation S becoming

oux ax ax.
S(xl’“"xm);_ ! ) 2 > L .
o—Xy ad—X; o— Xg

Compare Lemma 1 with [3], p. 82-83 (adjoining polytopes) and [7], p. 191
(the transformation 7).

ProOF OF THEOREM 1. Let (p, | 4 % k = 3) be given such that all p, are even
and Zkg3(4 band k)pk = 8.
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Concerning the sequence (qk‘4 # k 2 3), defined by g, = 1 p, for all k we
have the following

CLAIM. There exists a 3-polytope Q, having a face F{ which is an m-gon
for some m 2 5, such that
1) Q has q, k-gons, for all k = 3 and k # 4,m, and it has q,, + 1 m-gons,
ii) all vertices of Q are 4-valent, except for those of Fy which are 3-valent,
iii) m is even and F is centrally symmetric,

iv) F, and Q satisfy the same condition that F and P’ satisfy in Lemma 1.

Proor or THE CLamM. We first comstruct a 3-conmnected planar graph G
(see Fig. 1) that has g, k-gons for allk = 3 and k % 4,m, and has q,, + 1 m-gons,
for some m (compare figure 13.3.3 in [3], figure 2 in [4] and figure 3 in [9]):

For each k, k = 5, there are g, k-gons, arranged along the diagonal, such
that near each such a k-gons there are k — 4 triangles.

Since g3 =4+ X,.5(k—4)q,, the four additional triangles are located
outside the main square, one near each vertex of the square.

m-gon

AN

Fig. 1

Since G has exactly m vertices of odd order, it elementarily follows that m is
even.

Using Barnette-Griinbaum’s version [1] of Steinitz’s Theorem [8], where
the m-gon is preassigned as a regular m-gon Fy, we get a polytope Q, satisfying
the corresponding properties (i) (ii) and (iii). The promised polytope Q having F,
as a face is obtained by applying Lemma 1 to Q, and F;.
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This completes the proof of the claim.
To complete the proof of Theorem 1, let O* be
1) the centrally symmetric image of Q through the center of F,, if P is to be
centrally symmetric;

or 2) the line symmetric image of Q through a line of symmetry of F, if P is to

be line symmetric,

or 3) the plane symmetric image of Q through the plane that contains F,, if P is

to be plane symmetric.

P = QU Q% is the required polytope: its convexity follows from property (iv)
of Q; since the face F; of Q disappears in P, P has a 4-valent graph and it has
Pr = 2q, k-gons for all 4 £ k = 3.

Theorem 1 has been established.

Remarg. If “line symmetric” is deleted from Theorem 1, a simpler proof
can be given, using Theorems 5 and 6 (|3], p. 245-6) as follows:

Let G’ be the graph, isomorphic to G of Fig. 1, such that the corresponding
m-gon F, is the unit disc in E?, with the convex hull of the vertices of F, teing a
regular m-gon. Let f, g: E> — 0 — E? be defined by

f(ny) = ( y ) and g(x,7) = (=%, — y).

X
x2 + y2 ’ x2 + y2

Since Bd F; = G' N gf(G') = G’ N f(G'), it follows that both G* = G’ N gf(G’)
and G** = G’ " f(G’) are 4-valent 3-connected planar graphs having each p,
k-gons for all 4 % k = 3. The mapping gf is an involution on G* such that
for each vertex v of G*, v and gf(v) are separated by a circuit in G*; it follows
from Griinbaum’s Theorem 5 ([3], p. 245) that G* is the graph of a centrally
symmetric polytope. The mapping f is an involution on G** such that for each
face A of G**, A and f(A) have opposite orientations; it follows from Griilnbaum’s
Theorem 6 ([3], p. 246) that G** is the graph of a plane symmetric polytope, as
promised.

2. Theorem 2

A geodesic path on a 3-polytope P, having a 4-valent graph G(P) is a collection
of edges E,, -, E, of G(P) such that E; and E,,; have a common vertex but do
not lie on a common face of P, foralli,1 < i < k — 1 (see [3], p. 239); a geodesic

path is closed if, in addition, E, and E; have a common vertex but not a common
face; it is simple if it does not intersect itself.
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T. Motzkin asked the following [6]: Suppose P is a centrally symmetric 3-
polytope with a 4-valent graph, having simple closed self-antipodal geodesics.
Does there exist a polytope P’, combinatorially equivalent to P, having each one
of its geodesics in a plane?

A curve o on a centrally symmetric 3-polytope P with center 0 is said to be
self-antipodal if « is centrally symmetric with center 0.

Our Theorem 2 is clearly a sharp negative answer to Motzkin’s question.
For the proof of Theorem 2 we need the following

LEMMA 2. For every n = 4 there exists a 3-connected graph G, in the
plane E? having the following properties
1) G, has a regular (2n — 2)-gon F, such that the vertices of G, are 4-valent,
except of the vertices of F, which are 3-valent.
il) The edges of G, decompose into n simple arcs B4, -+, B,, where §; = BdF,
and B, is a simple geodesic connecting antipodal vertices of F,, for all i,2< i < n.
iii) G, has a k-gon H, such that for all i, 2 £i < n, ;N H, contains at
least two edges.

iv) H, meets F, in an edge of G,.

Proor. The proof is by induction on n. Starting with n = 4, G, is described
in Fig. 2.

Fig. 2

Suppose the assertion is true for n, n = 4. To show that it is true for n + 1,
let G,, F,, H,, B, ,p, satisfy the conditions of Lemma 2.

By (iv) H,n F, is an edge E, of G,. Let x be an interior point of an edge of
Bd F,, adjacent to E, (see Fig. 3), and let y be the antipodal of x, with respect to F,.

Let B,., be a path from x to y lying outside F, (except for its endpoints),
and such that at each vertex of H,, except for the vertices of E,, §, ., alternatingly
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cuts in and out of H,, while crossing edges of G, (see solid curve in Figure 3);
B, +1 1s taken near BdH, UBdF,.

B.+, meets and crosses alternatively either all the four edges that meet at a
vertex of H, or else only the two edges of H, among the four which meet at a
vertex of H,, in the fashion described in Fig. 3.

The graph G, is isomorphic to G, U f,+, under a homeomorphism that
takes F, onto a regular 2n-gon F,,, (where G,U f,+; means the following:
add all points of B,,; N G, as vertices, subdividing the edges on which each of
them lies, and add all arcs of f,,; — G, as new edges). In G,,.1, H,+ is taken to
to be the closure of that connected component of H, — f,4, that contains E,,.

/3n+|

Fig. 3

1t is obvious that G,; 1, F,+1, B1> "5 B+ satisfy conditions (i) and (ii). Since
n = 4, B, B and B, meets H, as described in (iii), hence H, has at least six edges
(except E,), and therefore B,,, enters H, at least twice, hence B,y N Hyyy
contains at least two (disjoint) edges. Since §,, ; meets all the edges of H, (except
E, and possibly another edge of H,, incident to E,), it follows that every edge
of H, (except possibly the two, as before) is divided into two, one of which be-
coming an edge of the new H, . Therefore condition (iii) is satisfied. Since E,, is
untouched, E,,; = H,.1NF,., = H,NF, =E,, hence condition (iv) is
satisfied. Clearly, G, is 3-connected if G, is.

This completes the proof of Lemma 2.

ProoOF OF THEOREM 2. For every n = 4, let G,, F,, H,, B;,---, B, be as given
in Lemma 2.

As in the proof of Theorem 1, let Q, be a 3-polytope in E* having G, for its
graph and such that the face (corresponding to) F, is a regular (2n — 2)-gon
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centered at the origin; @, can be so chosen, using Lemma 1, that the inverse of
the projection of Q, into the plane containing F, is 1 — 1 on Bd(F,).

Let P, = Q,uU(— @,). P, is a centrally symmetric 3-polytope with a 4-valent
graph. The geodesics oy, -, @, of P, are given by: o; = f; = Bd F, and
o; = B, u(—B;)foralli,2 < i =< n.(To avoid confusion, we use the same name
for objects in G, and in Bd Q,).

Clearly each geodesic of P, is simple closed and self-antipedal.

Suppose that there exists a polytope P,, combinatorially equivalent to P,, such
that a geodesic «;, corresponding to a;, of P,, for some iy, 2 < i, < n, isin a

plane R. By property (iii) of G,, «;, = B;, U ( — B;,) meets the 2-face H, of P,,
corresponding to H, of P,, in at least two edges. Therefore H, < R.

Since «;, is a geodesic, o;, # Bd H,, hence there exists a vertex Vea;, with
V¢BdH, Vew, <R, hence VeP,NR, and H,G P,NR.

This is a contradiction to the well-known property that a hyperplane R con-
taining a 2-face H, of a 3-polytope P, is a supporting hyperplane and H;, = P,N\ R
(see [3]). Hence no such a P, exists and Theorem 2 has been proved.

3. 3-valent Polytopes.

A sequence (ka6 # k = 3) of non negative integers is said to be 3-realizable
if there exists a value for ps and a 3-polytope P such that P has a 3-valent graph
and p, k-gons, for all k = 3.

It is well known that a necessary condition for the 3-realizability of

(Pk|67ék§ 3)

by a centrally symmetric 3-polytope is that all of the p,’s be even and
X 3(6 — k)p, = 12, see ([3], p. 253).
The following is B. Griinbaum’s ([3], p. 269, % 8)

ConIeCcTURE 1. Every sequence (pk{é # k = 3) of non negative even integers
satisfying X, 53(6 — k)p, = 12is 3-realizable by a centrally symmetric 3-polytope.

Let Q(m), m = 3, be the following statement:
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“Every sequence (p,|6 % k 23, ps 2 m and p, 2 1 if m # 5, otherwise
ps = 6) of non negative integers satisfying X,3(6 — k)p, = 12 is 3-realizable
by a 3-polytope Q, such that an m-gon of Q is surrounded by pentagons only.”

It can be easily proved, using ideas similar to the previous ones, that Conjecture 1
holds if Q(m) is true for some even m, m = 4. However, as was remarked by the
referee and by Professor B. Griinbaum, Q(m) is false for all m £ 0 (mod 6);

QUESTION. Is Q(m) true for some m = 0 (mod 6)?

The author would like to thank Professor Branko Griinbaum and the referee
for their many remarks and criticisms.

Added in proof: Qur Theorem 2 is related to the existence of non-strechable
simple arrangements of pseudolinesin the plane, see B. Griinbaum’s *‘Arrangements
of Hyperplanes”, Proc. Second Louisiana Conference on Combinatorics and
Graph Theory, Baton Rouge, March, 1971.
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