

ON REALIZING SYMMETRIC 3-POLYTOPES*

BY
JOSEPH ZAKS

ABSTRACT

We prove the analogue of Eberhard's Theorem for symmetric convex 3-polytopes with a 4-valent graph, and disprove a conjecture of the late T. Motzkin about realizing symmetric convex 3-polytopes so that all of their geodesics are in planes.

The purpose of this paper is to prove the following:

THEOREM 1. *Every sequence $(p_k \mid 4 \neq k \geq 3)$ of non negative even integers satisfying $\sum_{k \geq 3} (4 - k)p_k = 8$ is 4-realizable by a centrally symmetric, line symmetric and plane symmetric 3-polytope.*

THEOREM 2. *For every $n \geq 4$ there exists a centrally symmetric 3-polytope P_n , having a 4-valent graph and n simple closed self-antipodal geodesics $\alpha_1, \dots, \alpha_n$, such that if a polytope P'_n is combinatorially equivalent to P_n with corresponding geodesics $\alpha'_1, \dots, \alpha'_n$, then no one of the geodesics $\alpha'_2, \dots, \alpha'_n$ of P'_n is in a plane.*

1. Theorem 1

A sequence $(p_k \mid 4 \neq k \geq 3)$ of non negative integers is said to be *4-realizable* if there exists a value for p_4 and a 3-polytope P (= the convex hull of a finite set of points in E^3 with non empty interior) such that P has a 4-valent graph and p_k k -gons in its boundary cell-complex, for all $k \geq 3$. For additional definitions, see [3].

Theorem 1 is a relative to Eberhard's Theorem [2], and it was suggested by B. Grünbaum ([3], p. 269, # 8). For related results, see, in addition, [4], [5] and [9].

E. Jucović mentioned, in a private communication, that he had independently proved Theorem 1 (with one exceptional case).

* This research was supported by the National Research Council of Canada Grant A-3999.
Received July 27, 1970 and in revised form November 13, 1970.

Note that the conditions “all p_k even and $\sum_{k \geq 3} (4 - k)p_k = 8$ ” are necessary for the 4-realizability of $(p_k \mid 4 \neq k \geq 3)$ by a symmetric 3-polytope.

We need the following:

LEMMA 1. *If F is a face of a 3-polytope P , F is contained in the plane π and $T: E^3 \rightarrow \pi$ is the orthogonal projection, then there exists a polytope P' , combinatorially equivalent to P , such that F is a face of P' and $(T|_{P'})^{-1}[\text{Bd } F] = \text{Bd } F$.*

PROOF. Suppose, without loss of generality, that $(0, 0, 0) \in \text{Int } F$,

$$\pi = \{(x, y, z) \mid x = 0\} \text{ and } P \subset \{(x, y, z) \mid x \leq 0\}.$$

A supporting hyperplane of P , determined by a face ($\neq F$) of P , meets the positive x -ray in at most one point; so let $\alpha > 0$ be small enough such that $(\alpha, 0, 0)$ is not strictly separated from P by any of these hyperplanes.

The transformation S , defined by

$$S(x, y, z) = \left(\frac{\alpha x}{\alpha - x}, \frac{\alpha y}{\alpha - x}, \frac{\alpha z}{\alpha - x} \right)$$

is a projective transformation of E^3 (in fact, S is a 1-1 projective transformation when properly applied to P^3 , the real projective 3-space, with $E^3 \subset P^3$). $S|_{\pi}$ is the identity (pointwise!) and $S[\{(x, y, z) \mid x = \alpha\}]$ is the plane at infinity.

Therefore $S(P) = P'$ is a 3-polytope, combinatorially equivalent to P , and $F = S(F)$ is a face of P' .

Since no supporting hyperplane of P (except for π), determined by a face of P , meets the closed segment $(0, 0, 0) - (\alpha, 0, 0)$, it follows that their image under S do not meet the ray $\{(\alpha, 0, 0) \mid \alpha \geq 0\}$ plus the point at infinity on this ray $- S(\alpha, 0, 0)$. Therefore they must all meet $\{(\beta, 0, 0) \mid \beta < 0\}$.

It follows immediately that $T(P') = F$ and that $(T|_{P'})^{-1}[\text{Bd } F] = \text{Bd } F$.

REMARK. Lemma 1 can be extended to m -polytopes in the obvious way; the corresponding transformation S becoming

$$S(x_1, \dots, x_m) = \left(\frac{\alpha x_1}{\alpha - x_1}, \frac{\alpha x_2}{\alpha - x_1}, \dots, \frac{\alpha x_m}{\alpha - x_1} \right).$$

Compare Lemma 1 with [3], p. 82-83 (adjoining polytopes) and [7], p. 191 (the transformation τ_p).

PROOF OF THEOREM 1. Let $(p_k \mid 4 \neq k \geq 3)$ be given such that all p_k are even and $\sum_{k \geq 3} (4 - k)p_k = 8$.

Concerning the sequence $(q_k \mid 4 \neq k \geq 3)$, defined by $q_k = \frac{1}{2} p_k$ for all k we have the following

CLAIM. *There exists a 3-polytope Q , having a face F_1 which is an m -gon for some $m \geq 5$, such that*

- i) Q has q_k k -gons, for all $k \geq 3$ and $k \neq 4, m$, and it has $q_m + 1$ m -gons,
- ii) all vertices of Q are 4-valent, except for those of F_1 which are 3-valent,
- iii) m is even and F_1 is centrally symmetric,
- iv) F_1 and Q satisfy the same condition that F and P' satisfy in Lemma 1.

PROOF OF THE CLAIM. We first construct a 3-connected planar graph G (see Fig. 1) that has q_k k -gons for all $k \geq 3$ and $k \neq 4, m$, and has $q_m + 1$ m -gons, for some m (compare figure 13.3.3 in [3], figure 2 in [4] and figure 3 in [9]):

For each k , $k \geq 5$, there are q_k k -gons, arranged along the diagonal, such that near each such a k -gons there are $k - 4$ triangles.

Since $q_3 = 4 + \sum_{k \geq 5} (k - 4)q_k$, the four additional triangles are located outside the main square, one near each vertex of the square.

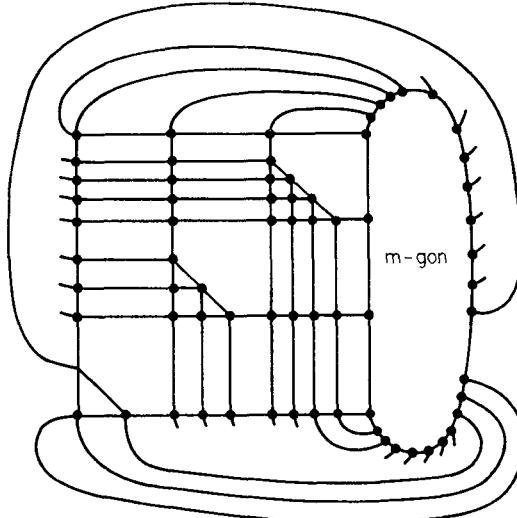


Fig. 1

Since G has exactly m vertices of odd order, it elementarily follows that m is even.

Using Barnette-Grünbaum's version [1] of Steinitz's Theorem [8], where the m -gon is preassigned as a regular m -gon F_1 , we get a polytope Q_1 satisfying the corresponding properties (i) (ii) and (iii). The promised polytope Q having F_1 as a face is obtained by applying Lemma 1 to Q_1 and F_1 .

This completes the proof of the claim.

To complete the proof of Theorem 1, let Q^* be

1) the centrally symmetric image of Q through the center of F_1 , if P is to be centrally symmetric;

or 2) the line symmetric image of Q through a line of symmetry of F_1 , if P is to be line symmetric,

or 3) the plane symmetric image of Q through the plane that contains F_1 , if P is to be plane symmetric.

$P = Q \cup Q^*$ is the required polytope: its convexity follows from property (iv) of Q ; since the face F_1 of Q disappears in P , P has a 4-valent graph and it has $p_k = 2q_k$ k -gons for all $4 \neq k \geq 3$.

Theorem 1 has been established.

REMARK. If “line symmetric” is deleted from Theorem 1, a simpler proof can be given, using Theorems 5 and 6 ([3], p. 245–6) as follows:

Let G' be the graph, isomorphic to G of Fig. 1, such that the corresponding m -gon F_1 is the unit disc in E^2 , with the convex hull of the vertices of F_1 being a regular m -gon. Let $f, g: E^2 \rightarrow E^2$ be defined by

$$f(x, y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right) \text{ and } g(x, y) = (-x, -y).$$

Since $\text{Bd } F_1 = G' \cap gf(G') = G' \cap f(G')$, it follows that both $G^* = G' \cap gf(G')$ and $G^{**} = G' \cap f(G')$ are 4-valent 3-connected planar graphs having each p_k k -gons for all $4 \neq k \geq 3$. The mapping gf is an involution on G^* such that for each vertex v of G^* , v and $gf(v)$ are separated by a circuit in G^* ; it follows from Grünbaum's Theorem 5 ([3], p. 245) that G^* is the graph of a centrally symmetric polytope. The mapping f is an involution on G^{**} such that for each face A of G^{**} , A and $f(A)$ have opposite orientations; it follows from Grünbaum's Theorem 6 ([3], p. 246) that G^{**} is the graph of a plane symmetric polytope, as promised.

2. Theorem 2

A *geodesic path* on a 3-polytope P , having a 4-valent graph $G(P)$ is a collection of edges E_1, \dots, E_k of $G(P)$ such that E_i and E_{i+1} have a common vertex but do not lie on a common face of P , for all i , $1 \leq i \leq k-1$ (see [3], p. 239); a geodesic path is *closed* if, in addition, E_1 and E_k have a common vertex but not a common face; it is *simple* if it does not intersect itself.

T. Motzkin asked the following [6]: Suppose P is a centrally symmetric 3-polytope with a 4-valent graph, having simple closed self-antipodal geodesics. Does there exist a polytope P' , combinatorially equivalent to P , having each one of its geodesics in a plane?

A curve α on a centrally symmetric 3-polytope P with center 0 is said to be *self-antipodal* if α is centrally symmetric with center 0.

Our Theorem 2 is clearly a sharp negative answer to Motzkin's question.

For the proof of Theorem 2 we need the following

LEMMA 2. *For every $n \geq 4$ there exists a 3-connected graph G_n in the plane E^2 having the following properties*

- i) G_n has a regular $(2n-2)$ -gon F_n such that the vertices of G_n are 4-valent, except of the vertices of F_n which are 3-valent.
- ii) The edges of G_n decompose into n simple arcs β_1, \dots, β_n , where $\beta_1 = \text{Bd}F_n$ and β_i is a simple geodesic connecting antipodal vertices of F_n , for all $i, 2 \leq i \leq n$.
- iii) G_n has a k -gon H_n such that for all $i, 2 \leq i \leq n$, $\beta_i \cap H_n$ contains at least two edges.
- iv) H_n meets F_n in an edge of G_n .

PROOF. The proof is by induction on n . Starting with $n = 4$, G_4 is described in Fig. 2.

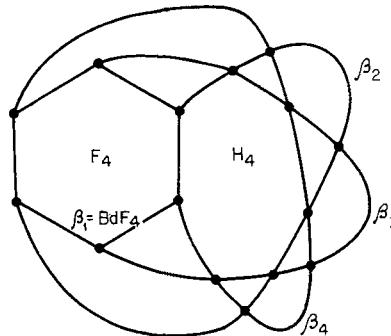


Fig. 2

Suppose the assertion is true for n , $n \geq 4$. To show that it is true for $n+1$, let $G_n, F_n, H_n, \beta_1, \dots, \beta_n$ satisfy the conditions of Lemma 2.

By (iv) $H_n \cap F_n$ is an edge E_n of G_n . Let x be an interior point of an edge of $\text{Bd}F_n$, adjacent to E_n (see Fig. 3), and let y be the antipodal of x , with respect to F_n .

Let β_{n+1} be a path from x to y lying outside F_n (except for its endpoints), and such that at each vertex of H_n , except for the vertices of E_n , β_{n+1} alternatingly

cuts in and out of H_n , while crossing edges of G_n (see solid curve in Figure 3); β_{n+1} is taken near $\text{Bd } H_n \cup \text{Bd } F_n$.

β_{n+1} meets and crosses alternatively either all the four edges that meet at a vertex of H_n or else only the two edges of H_n among the four which meet at a vertex of H_n , in the fashion described in Fig. 3.

The graph G_{n+1} is isomorphic to $G_n \cup \beta_{n+1}$ under a homeomorphism that takes F_n onto a regular $2n$ -gon F_{n+1} (where $G_n \cup \beta_{n+1}$ means the following: add all points of $\beta_{n+1} \cap G_n$ as vertices, subdividing the edges on which each of them lies, and add all arcs of $\beta_{n+1} - G_n$ as new edges). In G_{n+1} , H_{n+1} is taken to be the closure of that connected component of $H_n - \beta_{n+1}$ that contains E_n .

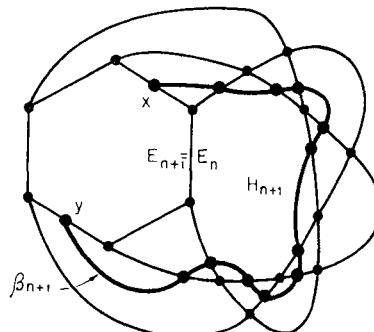


Fig. 3

It is obvious that G_{n+1} , F_{n+1} , $\beta_1, \dots, \beta_{n+1}$ satisfy conditions (i) and (ii). Since $n \geq 4$, β_2, β_3 and β_4 meets H_n as described in (iii), hence H_n has at least six edges (except E_n), and therefore β_{n+1} enters H_n at least twice, hence $\beta_{n+1} \cap H_{n+1}$ contains at least two (disjoint) edges. Since β_{n+1} meets all the edges of H_n (except E_n and possibly another edge of H_n , incident to E_n), it follows that every edge of H_n (except possibly the two, as before) is divided into two, one of which becoming an edge of the new H_{n+1} . Therefore condition (iii) is satisfied. Since E_n is untouched, $E_{n+1} = H_{n+1} \cap F_{n+1} = H_n \cap F_n = E_n$, hence condition (iv) is satisfied. Clearly, G_{n+1} is 3-connected if G_n is.

This completes the proof of Lemma 2.

PROOF OF THEOREM 2. For every $n \geq 4$, let $G_n, F_n, H_n, \beta_1, \dots, \beta_n$ be as given in Lemma 2.

As in the proof of Theorem 1, let Q_n be a 3-polytope in E^3 having G_n for its graph and such that the face (corresponding to) F_n is a regular $(2n-2)$ -gon

centered at the origin; Q_n can be so chosen, using Lemma 1, that the inverse of the projection of Q_n into the plane containing F_n is 1-1 on $\text{Bd}(F_n)$.

Let $P_n = Q_n \cup (-Q_n)$. P_n is a centrally symmetric 3-polytope with a 4-valent graph. The geodesics $\alpha_1, \dots, \alpha_n$ of P_n are given by: $\alpha_1 = \beta_1 = \text{Bd } F_n$ and $\alpha_i = \beta_i \cup (-\beta_i)$ for all i , $2 \leq i \leq n$. (To avoid confusion, we use the same name for objects in G_n and in $\text{Bd } Q_n$).

Clearly each geodesic of P_n is simple closed and self-antipodal.

Suppose that there exists a polytope P'_n , combinatorially equivalent to P_n , such that a geodesic α'_{i_0} corresponding to α_{i_0} of P_n , for some i_0 , $2 \leq i_0 \leq n$, is in a plane R . By property (iii) of G_n , $\alpha_{i_0} = \beta_{i_0} \cup (-\beta_{i_0})$ meets the 2-face H'_n of P'_n , corresponding to H_n of P_n , in at least two edges. Therefore $H'_n \subset R$.

Since α_{i_0} is a geodesic, $\alpha_{i_0} \neq \text{Bd } H'_n$, hence there exists a vertex $V \in \alpha_{i_0}$ with $V \notin \text{Bd } H'_n$. $V \in \alpha_{i_0} \subset R$, hence $V \in P'_n \cap R$, and $H'_n \subsetneq P'_n \cap R$.

This is a contradiction to the well-known property that a hyperplane R containing a 2-face H'_n of a 3-polytope P'_n is a supporting hyperplane and $H'_n = P'_n \cap R$ (see [3]). Hence no such a P'_n exists and Theorem 2 has been proved.

3. 3-valent Polytopes.

A sequence $(p_k \mid 6 \neq k \geq 3)$ of non negative integers is said to be 3-realizable if there exists a value for p_6 and a 3-polytope P such that P has a 3-valent graph and p_k k -gons, for all $k \geq 3$.

It is well known that a necessary condition for the 3-realizability of

$$(p_k \mid 6 \neq k \geq 3)$$

by a centrally symmetric 3-polytope is that all of the p_k 's be even and $\sum_{k \geq 3} (6 - k)p_k = 12$, see ([3], p. 253).

The following is B. Grünbaum's ([3], p. 269, # 8)

CONJECTURE 1. Every sequence $(p_k \mid 6 \neq k \geq 3)$ of non negative *even* integers satisfying $\sum_{k \geq 3} (6 - k)p_k = 12$ is 3-realizable by a centrally symmetric 3-polytope.

Let $Q(m)$, $m \geq 3$, be the following statement:

“Every sequence $(p_k \mid 6 \neq k \geq 3, p_5 \geq m \text{ and } p_m \geq 1 \text{ if } m \neq 5, \text{ otherwise } p_5 \geq 6)$ of non negative integers satisfying $\sum_{k \geq 3} (6 - k)p_k = 12$ is 3-realizable by a 3-polytope Q , such that an m -gon of Q is surrounded by pentagons only.”

It can be easily proved, using ideas similar to the previous ones, that Conjecture 1 holds if $Q(m)$ is true for some even m , $m \geq 4$. However, as was remarked by the referee and by Professor B. Grünbaum, $Q(m)$ is false for all $m \not\equiv 0 \pmod{6}$;

QUESTION. Is $Q(m)$ true for some $m \equiv 0 \pmod{6}$?

The author would like to thank Professor Branko Grünbaum and the referee for their many remarks and criticisms.

Added in proof: Our Theorem 2 is related to the existence of non-strechable simple arrangements of pseudolines in the plane, see B. Grünbaum’s “Arrangements of Hyperplanes”, Proc. Second Louisiana Conference on Combinatorics and Graph Theory, Baton Rouge, March, 1971.

REFERENCES

1. D. Barnette and B. Grünbaum, *Preassigning the shape of a face*, Pacific J. Math. **32** (2) (1970), 299–306.
2. V. Eberhard, *Zur Morphologie der Polyeder*, Teubner, Leipzig, 1891.
3. B. Grünbaum, *Convex Polytopes*, J. Wiley and Sons, New York, 1967.
4. B. Grünbaum, *Planar maps with prescribed types of vertices and faces*, Mathematika **16** (1969), 28–36.
5. B. Grünbaum, *Some analogues of Eberhard’s theorem on convex polytopes*, Israel J. Math. **6** (1968), 398–411.
6. T. Motzkin, *Combinatorial realization of centrally symmetric convex polyhedra, research problem 3–8*, J. Combinational Theory **3** (1967), 411.
7. G. C. Shephard, *Approximating by polytopes with projectively regular facets*, Mathematika **13** (1966), 189–195.
8. E. Steinitz, *Polyeder und Raumeinteilungen*, Enzykl. Math. Wiss. **3** (1922), 1–139.
9. J. Zaks, *The analogue of Eberhard’s theorem for 4-valent graphs on the torus*, Israel J. Math. **9** (1971), 299–305.

DALHOUSIE UNIVERSITY, HALIFAX

AND

MICHIGAN STATE UNIVERSITY

EAST LANSING