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ABSTRACT 

We prove the analogue of Eberhard's Theorem for symmetric convex 
3-polytopes with a 4-valent graph, and disprove a conjecture of the late T. 
Motzkin about realizing symmetric convex 3-polytopes so that all of their 
geodesics are in planes. 

The purpose of this paper is to prove the following: 

THEOREM 1. Every sequence (pki4 ~ k __> 3) of non negative even integers 

satisfying ]~k_>3(4--k)pk = 8 is 4-realizable by a centrally symmetric, line 

symmetric and plane symmetric 3-polytope. 

THEOREM 2. For every n > 4 there exists a centrally symmetric 3-polytope 

Pn, having a 4-valent graph and n simple closed self-antipodal geodesics al, ..., an, 

such that if a polytope P~ is combinatorially equivalent to Ph with corresponding 
v ! t ! v geodesics ~1, "", ~,, then no one of the geodesics ~2, "", ~, °f  Pn is in a plane. 

1. Theorem 1 

A sequence (pk[4 ~ k >-- 3) of  non negative integers is said to be 4-realizable 

if there exists a value for P4 and a 3-polytope P ( = the convex hull of  a finite 

set of  points in E a with non empty interior) such that P has a 4-valent graph 

and Pk k-gons in its boundary cell-complex, for all k >__ 3. For additional def- 

initions, see ~3]. 

Theorem 1 is a relative to Eberhard 's  Theorem [-2], and it was suggested by 

B. GriJnbaum ([3], p. 269, ~ 8). For  related results, see, in addition, [4], [5] 

and [9]. 

E. Jucovi~ mentioned, in a private communication, that he had independently 

proved Theorem 1 (with one exceptional case). 
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Note that the conditions "al l  Pk even and Ek=>3(4- k)pk = 8"  are necessary 

for the 4-realizability of (pkl4 ~ k > 3) by a symmetric 3-polytope. 

We need the following: 

LEMMA 1. I f  F is a face of a 3-polytope P, F is contained in the plane 7z 

and T: E 3 ~ n is the orthogonal projection, then there exists a polytope P', 

combinatorially equivalent to P, such that F is a face of P' and (T Iv')-1[ Bd F] 

= BdF.  

Pgoov. Suppose, without loss of generality, that (0, 0, 0) ~ IntF,  

7r = {(x,y,z) Ix = O} and P c {(x,y,z) lx = 0}. 

A supporting hyperplane of P, determined by a face ( ~ F) of P, meets the 

positive x-ray in at most one point; so let a > 0 be small enough such that (a, O, O) 

is not strictly separated from P by any of these hyperplanes. 

The transformation S~ defined by 

S(x 'Y 'Z)=(~  ~xx  ' ~yc~-x' c~-x~Z ) 

is a projective transformation of E 3 (in fact, S is a 1 - 1 projective transformation 

when properly applied to pS, the real projective 3-space, with E 3 c p3). S }, is the 

identity (pointwise !) and S[{(x, y, z) [ x = ~}] is the plane at infinity. 

Therefore S(P) = P' is a 3-polytope, combinatorially equivalent to P, and 

F = S(F) is a face of P' .  

Since no supporting hyperplane of P (except for n), determined by a face of  P, 

meets the closed segment (0, 0, 0) - (~, 0, 0), it follows that their image under S 

do not meet the ray {(~,0,0)[c~ > 0} plus the point at infinity on this r a y -  

S(~,0,0). Therefore they must all meet {(/3,0,0)I/3 < 0}. 

It follows immediately that T(P') = F and that (T Iv,) -1 [BdF]  = BdF.  

REMARK. Lemma 1 can be extended to m-polytopes in the obvious way; 

the corresponding transformation S becoming 

, 1 
\~ - -  X 1 ~ - -  X I '  O~ - -  Xl] 

Compare Lemma 1 with [3], p. 82-83 (adjoining polytopes) and [7], p. 191 

(the transformation zp). 

PROOF OF THEOREM 1. Let (Pk t 4 ~ k > 3) be given such that all Pk are even 

and ]~k~_a(4- k)pk = 8. 
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Concerning the sequence (qkl4 ~ k > 3), defined by qk = ½Pk for all k we 

have the following 

CLAIM. There exists a 3-polytope Q, having a face F 1 which is an m-gon 

for some m > 5, such that 

i) Q has qk k-gons, for all k > 3 and k ~ 4,m, and it has qm + 1 m-gons, 

ii) all vertices of Q are 4-valent, except for those of F1 which are 3-valent, 

iii) m is even and F1 is centrally symmetric, 

iv) F1 and Q satisfy the same condition that F and P' satisfy in Lemma 1. 

PROOF OF THE CLAIM. We first construct a 3-connected planar graph G 

(see Fig. 1) that has qk k-gons for all k > 3 and k # 4, m, and has qm + 1 m-gons, 

for some m (compare figure 13.3.3 in [3], figure 2 in [4] and figure 3 in [9]): 

For each k, k > 5, there are qk k-gons, arranged along the diagonal, such 

that near each such a k-gons there are k - 4 triangles. 

Since q3 = 4 +  ~k~_s(k--4)qk, the four additional triangles are located 

outside the main square, one near each vertex of the square. 

Fig. 1 

Since G has exactly m vertices of  odd order, it elementarily follows that m is 

even. 

Using Barnette-Griinbaum's version [1] of Steinitz's Theorem [8], where 

the m-gon is preassigned as a regular m-gon F1, we get a polytope Q1 satisfying 

the corresponding properties (i) (ii) and (iii). The promised polytope Q having F1 

as a face is obtained by applying Lemma 1 to Q1 and F~. 
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This completes the proof of the claim. 

To complete the proof of Theorem 1, let Q* be 

1) the centrally symmetric image of Q through the center of Fx, if P is to be 

centrally symmetric; 

or 2) the line symmetric image of Q through a line of symmetry of Fx, if P is to 

be line symmetric, 

or 3) the plane symmetric image of Q through the plane that contains F1, if P is 

to be plane symmetric. 

P = Q k3 Q* is the required polytope: its convexity follows from property (iv) 

of Q; since the face F1 of Q disappears in P, P has a 4-valent graph and it has 

p, = 2q, k-gons for all 4 ~ k > 3. 

Theorem 1 has been established. 

REMARk:. If "line symmetric" is deleted from Theorem 1, a simpler proof 

can be given, using Theorems 5 and 6 ([3], p. 245-6) as follows: 

Let G' be the graph, isomorphic to G of Fig. 1, such that the correstzonding 

m-gon F1 is the unit disc in E 2, with the convex hull of the vertices of F1 being a 

regular m-gon. Let f, g: E 2 - 0 ~ E 2 be defined by 

f ( x , y ) =  2 + y 2 ,  x 2 + y 2  and g ( x , y ) = ( - x , - y ) .  

Since BdF t = G' C~ gf(G') = G' r3f(G'), it follows that both G* = G' n gf(G') 

and G** = G' c~f(G') are 4-valent 3-connected planar graphs having each Pk 

k-gons for all 4 ~ k > 3. The mapping g f  is an involution on G* such that 

for each vertex v of G*, v and gf(v) are separated by a circuit in G*; it follows 

from Griinbaum's Theorem 5 ([3], p. 245) that G* is the graph of a centrally 

symmetric polytope. The mapping f is an involution on G** such that for each 

face A of G**, A and f (A)  have opposite orientations; it follows from Griinbaum's 

Theorem 6 ([3], p. 246) that G** is the graph of a plane symmetric polytope, as 

promised. 

2. Theorem 2 

A geodesic path on a 3-polytope P, having a 4-valent graph G(P) is a collection 

of edges Ex, ... ,E k of G(P) such that Ei and E;+ 1 have a common vertex but do 

not lie on a common face of P, for all i, 1 < i < k - 1 (see [3], p. 239); a geodesic 

path is closed if, in addition, E~ and Ek have a common vertex but not a common 
face; it is simple if it does not intersect itself. 
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T. Motzkin asked the following [-6]: Suppose P is a centrally symmetric 3- 

polytope with a 4-valent graph, having simple closed self-antilcodal geodesics. 

Does there exist a polytope P' ,  combinatorially equivalent to P, having each one 

of its geodesics in a plane? 

A curve ~ on a centrally symmetric 3-polytope P with center 0 is said to be 

self-antipodal if c~ is centrally symmetric with center 0. 

Our Theorem 2 is clearly a sharp negative answer to Motzkin's question. 

For the proof of Theorem 2 we need the following 

LEMMA 2. For every n > 4 there exists a 3-connected graph Gn in the 

plane E 2 having the following properties 

i) G. has a regular (2n - 2)-gon F. such that the vertices of G. are 4-valent, 

except of the vertices of F. which are 3-valent. 

ii) The edges of Gn decompose into n simple arcs ill, "",fin, where fll = BdFn 

and fl~ is a simple geodesic connecting antipodal vertices of Fn,for all i, 2<_ i < n. 

iii) G. has a k-gon H.  such that for all i, 2<- i <- n, fl~ N H. contains at 

least two edges. 

iv) H n meets F. in an edge of G.. 

PROOF. The proof is by induction on n. Starting with n = 4, G 4 is described 

in Fig. 2. 

f3 2 

~3 

Fig. 2 

Suppose the assertion is true for n, n > 4. To show that it is true for n + 1, 

let Gn, F., H., f l l , " ' , f l ,  satisfy the conditions of Lemma 2. 

By (iv) H~ n F.  is an edge E~ of G.. Let x be an interior point of an edge of 

Bd F n , adjacent to E n (see Fig. 3), and let y be the antipodal of x, with respect to F n. 

Let fl.+l be a path from x to y lying outside F~ (except for its endpoints), 

and such that at each vertex of H., except for the vertices of En, fin+ 1 alternatingly 
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cuts in and out of H., while crossing edges of G. (see solid curve in Figure 3); 

/3.+ ~ is taken near Bd H. U Bd F..  

//.+ 1 meets and crosses alternatively either all the four edges that meet at a 

vertex of H. or else only the two edges of H.  among the four which meet at a 

vertex of H., in the fashion described in Fig. 3. 

The graph G.+t is isomorphic to G. u f l .+t  under a homeomorphism that 

takes F. onto a regular 2n-gon F.+t (where G.U[~.+I means the following: 

add all points of//.+1 tq G. as vertices, subdividing the edges on which each of 

them lies, and add all arcs of/~n+~ - G. as new edges). In G.+~, H.+x is taken to 

to be the closure of that connected component of H. -/~.+ t that contains E.. 

l ~n. En 

Fig. 3 

It is obvious that G.+I, F.+I,/~1, "",/~.+1 satisfy conditions (i) and (ii). Since 

n > 4,/12,//3 and/~4 meets H. as described in (iii), hence H. has at least six edges 

(except E.), and therefore /~.+l enters H.  at least twice, hence /~.+ln H.+I 

contains at least two (disjoint) edges. Since B.+ ~ meets all the edges of H. (except 

E. and possibly another edge of H., incident to E.), it follows that every edge 

of H. (except possibly the two, as before) is divided into two, one of which be- 

coming an edge of the new H.+ 1. Therefore condition (iii) is satisfied. Since E. is 

untouched, En+ x = Hn+ I tq F.+ l = Hn t"S Fn = En, hence condition (iv) is 

satisfied. Clearly, G.+ ~ is 3-connected if G. is. 

This completes the proof of Lemma 2. 

PROOF OF THEOREM 2. For every n > 4, let G., F., H., f l l , '" ,f l ,  be as given 

in Lemma 2. 

As in the proof of Theorem 1, let Q. be a 3-polytope in E a having G. for its 

graph and such that the face (corresponding to) F. is a regular ( 2 n -  2)-gon 
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centered at the origin; Q. can be so chosen, using Lemma 1, that the inverse of 

the projection of Q. into the plane containing F.  is 1 - 1 on Bd (F.). 

Let P.  = Q. u ( - Q.). P.  is a centrally symmetric 3-polytope with a 4-valent 

graph. The geodesics cq, ..., c~. of  P.  are given by:  cq = fll = Bd F~ and 

e~ = fl~ U ( - fl~) for all i, 2 < i < n. (To avoid confusion, we use the same name 

for objects in G. and in Bd Q.). 

Clearly each geodesic of  P.  is simple closed and self-antipodal. 

Suppose that there exists a polytope P ' ,  combinatorially equivalent to P~, such 

that a geodesic e/o corresponding to % of  P., for some i o , 2 < io < n, is in a 

plane R. By property (iii) of  G., cq o = fl~o • ( - fl~o) meets the 2-face H'. of  P'., 

corresponding to H.  of  P., in at least two edges. Therefore H'. c R. 

Since ~to is a geodesic, % # BdH~, hence there exists a vertex Verso with 

V(~BdH',. V e c % c R ,  hence V~P'C3R, and H ' ~  P~c3R. 

This is a contradiction to the well-known property that a hyperplane R con- 

taining a 2-face H~ of a 3-polytope P" is a supporting hyperplane and H,] = P~ c~ R 

(see [3]). Hence no such a P', exists and Theorem 2 has been proved. 

3. 3-valent Polytopes. 

A sequence (Pk[ 6 ~ k > 3) of non negative integers is said to be 3-realizable 

if there exists a value for P6 and a 3-polytope P such that P has a 3-valent graph 

and Pk k-gons, for all k > 3. 

It is well known that a necessary condition for the 3-realizability of 

(p 16 k 3) 

by a centrally symmetric 3-polytope is that all of  the pk'S be even and 

Eke3(6 - k)pk = 12, see ([3], p. 253). 

The following is B. Grtinbaum's ([3], p. 269, #e 8) 

CONJECTURE 1. Every sequence (Pkl 6 ~ k > 3) of non negative even integers 

satisfying ~k >= 3 (6 -- k)p k = 12 is 3-realizable by a centrally symmetric 3-polytope. 

Let Q(m), m _> 3, be the following statement: 
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"Every sequence (Pk[6 ~ k > 3, P5 > m and P m >  1 if m ~ 5, otherwise 

P5 > 6) of  non negative integers satisfying ]~k~a(6 -- k)pk = 12 is 3-realizable 

by a 3-polytope Q, such that  an m-gon of Q is surrounded by pentagons only."  

I t  can be easily proved, using ideas similar to the previous ones, that  Conjecture 1 

holds if Q(m) is true for some even m, m > 4. However, as was remarked by the 

referee and by Professor B. Grfinbaum, Q(m) is false for all m ~ 0 (mod 6); 

QUESTION. IS Q(m) true for some m = 0 (rood 6)? 

The author would like to thank Professor Branko Griinbaum and the referee 

for their many remarks and criticisms. 

Added  in proof: Our Theorem 2 is related to the existence of non-strechable 

simple arrangements of  pseudolines in the plane, see B. Grt inbaum's "Arrangements  

of  Hyperplanes",  Proc. Second Louisiana Conference on Combinatorics and 

Graph Theory, Baton Rouge, March, 1971. 
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